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SUMMARY
Autismspectrumdisorder (ASD) is a heritable neurodevelopmental disorder characterizedbydeficits in social
interactions and communication. Protein-altering variants in many genes have been shown to contribute to
ASD; however, understanding the convergence across many genes remains a challenge. We demonstrate
that coexpression patterns from993 human postmortembrains are significantly correlatedwith the transcrip-
tional consequences of CRISPR perturbations in human neurons. Across 71 ASD risk genes, there was signif-
icant tissue-specific convergence implicating synaptic pathways. Tissue-specific convergence was further
demonstrated across schizophrenia and atrial fibrillation risk genes. The degree of ASD convergence was
significantly correlated with ASD association from rare variation and differential expression in ASD brains.
Positively convergent genes showed intolerance to functional mutations and had shorter coding lengths
than known risk genes even after removing association with ASD. These results indicate that convergent co-
expression can identify potentially novel genes that are unlikely to be discovered by sequencing studies.
INTRODUCTION

Autism spectrum disorder (ASD) is a highly heritable neuropsy-

chiatric disorder with a population prevalence of �1%.1

Sequencing studies have implicated dozens of genes contrib-

uting to risk of ASD based on an excess of rare deleterious var-

iations in cases compared with controls.2–5 These findings have

highlighted biological pathways implicated in ASD, including

synaptic function, chromatin, and transcriptional regulation.2,3

Many of these pathways have since been corroborated by tran-

scriptomic studies.6–8 However, our understanding of how these
This is an open access article under the CC BY-N
genes may interact and whether they converge on shared down-

stream pathways with potential to implicate novel risk genes re-

mains incomplete.

Genetic perturbation studies involving induced pluripotent

stem cells (iPSCs) and CRISPR offer insight into context-specific

cellular and transcriptomic consequences of perturbing ASD-

associated genes individually, highlighting downstream genes

or pathways that might be relevant for disease risk.9,10 Loss-

of-function (LoF) models of CHD8 and FOXP1, two transcrip-

tional regulators with strong association with ASD, have shown

dysregulation of multiple other ASD genes.9,11 Although several
Cell Genomics 3, 100277, April 12, 2023 ª 2023 The Author(s). 1
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ASD risk genes have been shown to have a direct molecular re-

lationships with each other (e.g., CHD8 regulates and binds to

other ASD risk genes like CTCF9,12), many altered genes lacked

CHD8 and FOXP1 binding sites, suggesting that the effects of

the perturbations can be propagated by downstream regulatory

interactions.9,11 In Xenopus tropicalis,13 LoF CRISPR-mediated

genome editing of 10 ASD-implicated genes resulted in an

increased ratio of neural progenitor cells to neurons in the telen-

cephalon, pointing to a convergent cellular outcome. Additional

work using CRISPR-Cas9 to knock out ASD genes followed by

single-cell RNA sequencing in the developing mouse brain iden-

tified recurrent glial and neuronal modules, again pointing to

cellular convergence.14 Another study used a multiplexed iPSC

platform and introduced frameshift mutations in 27 ASD genes.

The ASD mutations were classified into two subgroups based

on alterations in prefrontal cortex neurogenesis. which then

correlated with abnormal WNT signaling; one group inhibited

and one group enhanced spontaneous cortical neurogenesis,15

confirming the existence of convergent cellular and signaling

phenotypes within this larger subset of ASD-associated genes.

Although these functional studies have shed some light on the

interplay between multiple disease genes, determining conver-

gent signatures across the large number of implicated ASD

genes in human cell lines remains a technical and logistical chal-

lenge. These efforts are limited by the substantial time and cost

required to generate human iPSCs, differentiate into a given cell

type, edit the genes of interest, and investigate downstream

consequences. Analysis of protein-protein interaction (PPI) net-

works and coexpression modules of ASD risk genes has shown

that there is high connectivity, suggesting that there is more

direct interaction than expected by chance.16–20 Convergence

in gene expression profiles has been demonstrated not only

among ASD risk genes affected by rare protein truncation vari-

ants but also for genes associated with ASD by large copy num-

ber variants (CNVs)21,22 and common variation.23 Similarly, ASD

risk genes have been shown to be highly coexpressed in the

developing cortex.18,24 Prior work has layered expression data

onto to the genetic findings to predict novel ASD risk genes,17

successfully identifying many genes that are now significant in

larger genetic studies. The high degree of connectivity across

ASD risk genes presents an opportunity to leverage coexpres-

sion to better understandmolecular convergence in ASD.We hy-

pothesized that coexpression from a relevant tissue would pro-

vide a meaningful proxy for the transcriptional effects of

CRISPR perturbation, enabling an analysis of transcriptional

convergence across many ASD risk genes to implicate novel

shared downstream genes and pathways. Despite the incredible

success in identifying genes for ASD, the power of genetic

studies is dependent on observing variants frequently enough

to ensure a statistically significant excess in cases. Therefore,

power will be limited by shorter gene length or extreme genic

intolerance. Implicating genes through transcriptional conver-

gence presents one potential path to mitigating this limitation.

Here, we investigated the level of coexpression conver-

gence—similarity in coexpression profiles—among ASD risk

genes by leveraging large-scale postmortem brain tissue data-

sets. We first showed that differential expression from

CRISPR-mediated knockdown or activation is significantly and
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directionally correlated with coexpression of the perturbed

gene, suggesting that coexpression can proxy differential

expression. Across a set of high-confidence ASD risk genes

from sequencing studies, we meta-analyzed their coexpression

patterns to show highly significant coexpression convergence in

ASD-relevant tissue. The risk genes from schizophrenia and

atrial fibrillation were also only convergent in disease-specific

tissue (i.e., convergent coexpression of atrial fibrillation genes

in only heart tissue). We identified genes that were significantly

coexpressed with the 71 ASD genes that were enriched for (1)

neurodevelopmental disorder (NDD) genes even after excluding

previous ASD-associated genes, (2) differential expression in

postmortem brains of ASD patients compared with controls,

and (3) synaptic function. Finally, we were able to implicate

genes as novel ASD risk candidates, including smaller genes

and those highly intolerant to LoF variation, which precluded

their identification from current genetic studies. Overall, in silico

coexpression convergence approaches as used here could be

important time- and cost-effective additions to our understand-

ing of disease biology.

RESULTS

Characterization of CRISPR-mediated perturbations
RNA sequencing data from17CRISPRperturbation experiments

in neurons comprising 15 unique genes were included from three

independent sources (STAR Methods). In total, the CRISPR ex-

periments included 12 CRISPR-mediated heterozygous or ho-

mozygous LoF mutational models (AFF2, ANOS1, ASTN2,

ATRX, CACNA1C, CHD8, KCTD13, KCNQ2, MBD5, SCN2A

[2x], and TENM1),10,25 four CRISPR activation models (FURIN,

SNAP91, TSNARE1, and CLCN3),26 and one CRISPR interfer-

ence model (SCN2A). These genes were selected based on

data availability and involvement or implication in neurodevelop-

mental disorders. We tested for differential expression between

the CRISPR-edited cell lines and the unedited cell lines for each

gene passing quality control, including observing the expected

effect in the perturbed gene (STAR Methods). Each experiment

was analyzed separately, and the differential expression effect

sizes were converted to Z scores representing ‘‘CRISPR pertur-

bation.’’ The experiments had variable impact on global expres-

sion patterns, with the total number of significantly differentially

expressed genes identified ranging from 164–4,857 and lambda

inflation factors ranging from 0.29–4.13 (Table 1).

One gene (SCN2A) was perturbed in three independent exper-

iments, allowing us to quantify the variability of global gene

expression changes because of CRISPR perturbation and

genetic background. We found significant but modest Pearson

correlations of differential expression across experiments that

varied from 0.202 between the two CRISPR-mediated gene

editing experiments to 0.343 and 0.335 between the CRISPR

interference (CRISPRi) experiment and the two gene editing ex-

periments (Figure S1).

Gene coexpression correlates with downstream
transcriptional consequences of CRISPR perturbation
We hypothesized that gene coexpression would proxy differen-

tial expression driven by CRISPR perturbations in the



Table 1. CRISPR modeling experimental design and numbers of differentially expressed genes per experiment

Gene

Type of CRISPR

perturbation

Number of

edited

lines

Number of

unedited

lines

Number of

significant

negative

genes

(p < 0.05)

Number of

significant

positive

genes

(p < 0.05)

Number of

significant

genes

(p < 0.05) Lambda

AFF2a hem gene edit 5 4 151 146 297 0.48

ANOS1a hem gene edit 4 4 122 42 164 0.29

ASTN2a hom gene edit 3 4 455 173 628 0.75

ATRXa hem gene edit 4 4 991 966 1,957 1.39

CACNA1Ca hom gene edit 3 4 166 132 298 0.57

CHD8a het gene edit 4 4 112 107 249 0.5

KCNQ2a hom gene edit 4 4 381 329 710 1.29

KCTD13 het gene edit 6 5 2,167 2,690 4,857 4.13

MBD5 het gene edit 6 3 81 177 258 0.72

SCN2A het gene edit 20 10 573 1,137 1,710 1.84

SCN2Aa hom gene edit 4 4 143 80 223 0.53

SCN2A CRISPRi 2 2 2,062 2,525 4,587 2.13

TENMa hem gene edit 5 4 1,114 1,280 2,394 2.33

CLCN3 CRISPRa 6 6 1,049 605 1,654 1.31

FURIN CRISPRa 2 2 399 268 667 0.54

SNAP91 CRISPRa 2 2 434 764 1,198 1.11

TSNARE1 CRISPRa 2 2 626 825 1,451 1.07

hem, hemizygous; hom, homozygous; het, heterozygous.
aDataset described in Deneault et al.10
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experiments described above. We leveraged 993 postmortem

brain samples from the dorsolateral prefrontal cortex (DLPFC)

and calculated pairwise gene coexpression using Pearson corre-

lation (STAR Methods). We identified consistent and significant

negative correlation between differential expression because of

CRISPR-mediated gene knockdown and the corresponding per-

turbed gene’s normalized coexpression profile ranging from

�0.089 to �0.45 (Figure 1A). The LOESS regression curve for

each panel highlights that significantly differentially expressed

genes tend tohavea stronger negative correlation. Theexception

was the ANOS1 LoF model, which had a nominally significant

positive correlation (R = 0.018, p = 0.046). Overall, genes that

are more significantly downregulated by a specific CRISPR

perturbation are more highly and positively coexpressed with

the perturbed gene. This holds true when CRISPR targets are

downregulated via LoF mutation or CRISPRi as well as when

they are upregulated using CRISPR activation (CRISPRa)

(Figure S2).

With a variably sized but consistently significant negative rela-

tionship seen across single gene CRISPR perturbation and co-

expression, we next asked whether meta-analyzing differential

expression from multiple CRISPR perturbations could also be

proxied by a meta-analysis of the coexpression profiles of the

perturbed genes. In other words, we wanted to assess whether

genes that were consistently differentially expressed in the same

direction across multiple gene perturbations (convergent genes)

could be inferred from a similar convergence of coexpression of

the respective genes from postmortem brain tissue. When we

separately meta-analyzed all CRISPR-mediated gene edits and
corresponding coexpression profiles for the perturbed genes,

we found that convergent CRISPR perturbation was significantly

negatively correlated with convergent coexpression (Pearson’s

R = �0.44, p < 1 3 10�300; Figure 1B).

Given the significant correlation between CRISPR perturba-

tion and coexpression, we next assessed how that compared

with the correlation of differential expression from different

CRISPR perturbations of the same gene (SCN2A) across three

different experiments. Significant Pearson correlation was

observed between SCN2A coexpression and differential expres-

sion in each CRISPR experiment of SCN2A ranging from �0.25

to �0.43 (Figure 2). The correlation statistics across CRISPR

SCN2A experiments (0.2–0.34) were similar to those seen

when compared with coexpression, suggesting that coexpres-

sion provided a similar proxy to transcriptional dysregulation

as an independent CRISPR experiment. After meta-analyzing

the differential expression profiles from the three SCN2A

CRISPR experiments, the correlation with coexpression

was stronger than each individual experiment alone (Pearson’s

R = �0.45, p < 1 3 10�300).

In silico functional convergence of ASD risk genes
We next sought to leverage coexpression to test convergence of

the 71 risk genes implicated from the most recent ASD exome

sequencing study.5 After calculating meta-analysis effect sizes

of Fisher’s transformed Pearson’s correlations, we assessed

significance by running 10,000,000 permutations where the co-

expression of 71 randomly selected genes (among those with

coexpression) were meta-analyzed (STAR Methods). Significant
Cell Genomics 3, 100277, April 12, 2023 3
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Figure 1. Coexpression proxies CRISPR-induced differential expression

(A) Correlation between differential expression profiles for 10 CRISPR knockdown models (y axis) with respective coexpression profiles (x axis) for each gene

(points).

(B) Correlation of meta-analyzed CRISPR knockouts with respective meta-analyzed coexpression of perturbed genes. Coexpression is represented as a Fisher

transformed Pearson’s correlation Z score. A Pearson correlation was done to assess the correlation between coexpression and differential expression. The

curve for each panel was fitted with a locally weighted smoothing (LOESS) regression.
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overall convergence was identified by comparing the variance of

the distribution of convergent coexpression of the ASD genes to

the variance of the permuted random genes (ASD variance =

1.70, mean permuted null variance = 0.131, p = 9.93 10�7). A to-

tal of 3,553 genes were found to be significantly convergently

coexpressed at a Bonferroni-adjusted empirical p value of less

than 0.01. Nearly 60% of those (n = 2,157) were positively

convergent, meaning that their expression was consistently in

the same direction as the ASD genes. Comparison with conver-

gence defined using the rank-based Spearman’s correlation

yielded consistent results and near-total correlation (Spear-

man’s rank correlation, rho = 0.995, p < 1 3 10�300). Next, we

relaxed the false discovery rate (FDR) threshold for ASD genes

to an FDR of less than 0.05 and still found significant levels of

convergence (ASD185 genes variance = 1.23), with 2,842 genes

with a Bonferroni-adjusted empirical p value of less than 0.01

and a positive Z score.

The analysis that identified the 71 ASD genes directly incorpo-

ratedconstraint against LoFvariation (LoFobserved/expectedup-

per bound fraction [LOEUF]27) into estimates of prior relative risk,

which could inflate coexpression convergence among intolerant

genes. Toaccount for this potential confounding,we reran theper-

mutation procedure, randomly selecting 71 genes with matching

LOEUF scores to the ASD genes. The p values between intoler-

ance-matched permutation and not were strongly correlated

(Spearman’s rank correlation, rho =0.93, p< 1310�300), suggest-

ing that themodels of ASD risk genediscovery did not significantly

inflate discovery of convergent genes (Figure S3). We similarly

adjusted with coding sequence length and found strong correla-

tion as well (Spearman’s rank correlation, rho = 0.925, p < 1 3

10�300). Further, an analysis based on a Fisher’s combined test

using only de novo and missense variants without incorporating

intolerance identified 49 ASD genes (FDR < 0.001) that showed

no significant difference in intolerance scores compared with the

71 ASD genes (two-sided Wilcoxon test, W = 1825.5, p = 0.648).
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Given that intolerance did not seem to confound our analyses,

we meta-analyzed the initial 71 genes for downstream analyses.

Convergent genes were overrepresented in gene sets related

to neuronal and synaptic function with the most significant path-

ways across categories, including the synapse (p = 1.79 3

10�21), synaptic signaling (p = 6.23 3 10�19), neuronal system

(p = 1.74 3 10�13), and abnormal CNS synaptic transmission

(p = 3.03 3 10�13) (Table S1). Convergent genes also repre-

sented 127 of the 410 genes implicated in neurodevelopmental

disorders from DisGeNet28 (p = 2.96 3 10�7) and 71 of the 193

genes in the cation channel complex (p = 1.45 3 10�7). Next,

we partitioned the significantly convergent genes by direction

of effect and found that positively convergent genes were largely

enriched in synaptic pathways (Table S2), whereas negatively

convergent genes had a much less clear pattern of enrichment

across pathways (Table S3).

Convergence captures ASD signals from exomes and
postmortem brain studies
Given the strong enrichment of synaptic functions observed

across convergent genes and the neurodevelopmental deficits

observed in ASD, we reasoned that convergent genes contrib-

uting to ASD etiology would display disease-relevant tissue

specificity. We tested this hypothesis using GTEx29 data and

found no meaningful convergence in liver, left ventricle, or mus-

cle coexpression, but we saw convergence in frontal cortex tis-

sue (Figure 3A). The mean absolute convergence Z score for the

liver, heart, and muscle were 0.318, 0.655, and 0.591 respec-

tively, while the mean absolute Z score from the DLPFC was

1.05 and was significantly different than the non-brain tissues

(two-sided Wilcoxon test, p < 2.2 3 10�16), suggesting tissue

specificity of ASD convergence. The mean absolute conver-

gence Z score for the frontal cortex was 1.10, which was similar

to the DLPFC. Furthermore, we did not find any consistent rela-

tionships between CRISPR differential expression in neurons



Figure 2. Coexpression consistently proxies differential expression for SCN2A across three independent perturbations

The top left panel shows CRISPRi differential expression in neurons of SCN2A correlated with coexpression.

The top right panel shows CRISPR heterozygous knockout differential expression in neurons of SCN2A correlated with coexpression.

The bottom left panel shows a second CRISPR heterozygous knockout differential expression in neurons of SCN2A correlated with coexpression. The bottom

right panel shows themeta-analysis of all three SCN2ACRISPR experiments correlated with coexpression. Coexpression is represented as a Fisher transformed

Pearson’s correlation Z score (x axis). A Pearson correlationwas calculated to assess the correlation between coexpression and differential expression (y axis) for

each gene (points). The curve for each panel was fitted with a locally weighted smoothing (LOESS) regression.
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and coexpression from the liver, heart tissue, andmuscle and the

correlation coefficients were significantly different from those

seen in the brain (two-tailed Fisher’s Z test, p < 1 3 10�300)

(Figures S4�S6). To determine whether the enrichment of

convergent genes associated with synaptic biology was driven

by ASD risk genes associated with synaptic functions, we as-

signed 60 of the 71 ASD genes to relevant pathway terms asso-

ciated with synaptic, transcription factor, and chromatin biology.

The convergence permutations were rerun for each set sepa-

rately, and we found that convergence was strongly driven by

synaptic genes, whereas the chromatin genes and transcription
factors displayed weaker convergence (synaptic variance =

2.57, chromatin variance = 0.39, transcription variance = 0.18)

(Figure S7).

To assess the generalizability of this approach, we quantified

convergence amongst 10 schizophrenia (SCZ) risk genes identi-

fied by the Schizophrenia Exome Meta-analysis consortium

(SCHEMA).30 We found significant convergence in the DLPFC

(absolute mean = 0.74, variance = 0.81) but not in the unrelated

tissues, such as the left ventricle, muscle, and liver. Next, we

asked whether convergent genes overlapped between SCZ

and ASD, given the known overlap in disease biology. Among
Cell Genomics 3, 100277, April 12, 2023 5



A B C

Figure 3. Convergence is tissue specific and associated with ASD

(A) Distributions of transcriptional convergence of 71 high-confidence ASD genes in different tissues.

(B) Smoothed relationship with confidence interval between ASD exome significance and significantly convergent coexpression effect sizes (pbonf < 0.01).

(C) Correlation between convergently coexpressed genes (pbonf < 0.01) and differential expression of ASD postmortem DLPFC compared with controls from

Gandal et al.8 The curve was fitted with a locally weighted smoothing (LOESS) regression.
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the 135 significant SCZ convergent genes, 124 were also signif-

icant ASD convergent genes (Fisher’s exact test, odds ratio [OR]:

60.80 [29.9–144.0], p = 2.43 3 10�74). Then, we selected an un-

related non-brain phenotype in atrial fibrillation and found no

convergence in the brain tissues but 3,040 significant conver-

gent genes (pbonf < 0.01) in the left ventricle (Figure S8). Given

the overlap between ASD and developmental disorders (DDs),

we sought to compare the overlap of significantly convergent

genes between ASD-predominant and DD-predominant genes.

We found that there was a significant overlap between the 541

convergent ASD-specific genes and 91 convergent DD-specific

genes (OR: 19.5 [12.20–30.60], p = 7.11 3 10�28). Interestingly,

there was a strong overlap between ASD-predominant and

SCZ (OR: 13.10 [8.64–19.5], p = 4.99 3 10�26), but the overlap

between DD-predominant and SCZ was not significant (OR:

1.40, [0.035–8.16], p = 0.52).

Finally, we asked whether the ASD convergent genes could

inform on the genetic etiology of ASD. Excluding the 71 ASD

genes used to calculate convergence, there was a significant

correlation between convergence and evidence for ASD risk

based on the significance of each of the remaining genes to

ASD (Spearman’s rank correlation, rho = �0.316, p = 3.03 3

10�65) (Figure 3B). We find a similar correlation between conver-

gence in frontal cortex tissue from GTEx 53 (Spearman’s rank

correlation, rho = �0.213, p = 6.02 3 10�25). There was also a

significant enrichment of ASD genes implicated through rare

variant analyses (q < 0.05) among the positively convergent

genes (Z > 2) (OR: 4.63 [2.97–7.10], p = 1.023 10�10). This effect

size was larger when only including Bonferroni-significant

(p < 0.01) positively convergent genes (OR: 7.41 [3.10–20.40],

p = 1.85 3 10�7). That is, genes most positively convergent

were also most likely to be associated with ASD through rare

variant analyses. This finding was also seen among SCZ conver-

gence and the SCHEMA association results (Spearman’s rank

correlation, rho = �0.276, p = 0.005).

ASD risk genes are more likely to be intolerant to loss of func-

tion variation. Convergent genes also are significantly more likely
6 Cell Genomics 3, 100277, April 12, 2023
to be intolerant (mean LOEUF for convergent genes = 0.73,mean

LOEUF for other genes = 0.83,Wilcoxon p = 2.853 10�31). How-

ever, after splitting genes based on intolerance, we found a sig-

nificant correlation between convergence and ASD association

for tolerant (LOEUF > 0.35, Spearman’s rank correlation, rho =

0.18, p = 1.91 3 10�15) and intolerant genes (LOEUF < 0.35,

Spearman rank correlation, rho = 0.14, p = 8.57 3 10�5) (Fig-

ure S9). A significant relationship also existed between conver-

gence and differential expression of ASD postmortem brain tis-

sue compared with controls, with the positive convergence

being correlated with downregulation in ASD (Spearman’s rank

correlation =�0.23, p = 2.393 10�43; Figure 3C). We find a simi-

larly negative correlation when using frontal cortex fromGTEx 53

(Spearman’s rank correlation = �0.369, p = 1.61 3 10�76).

Potential to identify novel ASD genes not identified in
current genetic analyses
Genes with shorter coding sequences will have reduced power

in genetics analyses that require multiple deleterious variants

among cases to quantify risk. Similar issues could exist for genes

where deleterious variation is inviable but less deleterious mod-

ulation could contribute to ASD risk. Given the significant rela-

tionship between convergence and ASD association, we asked

whether our set of convergent genes included potential ASD

risk genes with properties that current genetics studies might

be underpowered to identify. Among themost significantly asso-

ciated 71 ASD risk genes, there was a highly significant skew to-

ward a longer coding sequence (median = 3,642 bp) compared

with 1,293 bp among all other genes. After splitting our positive

convergent genes into those with even a weak association to

ASD (Bayes factor [BF] > 2) or not, we identified significantly

increased median coding sequence lengths in the ASD associ-

ated genes compared with the rest (median ASD-associated

coding sequence length = 2,723 bp, median non-ASD -associ-

ated coding sequence length = 1,809 bp, p = 5.76 3 10�25, Wil-

coxon signed-rank Test; Figure 4A). The most positively conver-

gent genes not associated with ASD had intolerance scores
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Figure 4. Convergence captures novel intolerant and shorter genes implicated in ASD risk

(A) Distributions and medians (colored vertical lines) of coding sequence lengths for significant positively convergent genes stratified by their association with

ASD. High-confidence ASD exome genes (purple) consist of the 71 genes with a q-value of less than 0.001. A Bayes factor (BF) greater than 2 in the ASD exome

data is considered ASD associated. The positive convergent genes are split by those with a BF greater than 2 (green) and those with a BF of less than 2 (yellow).

(B) Relationship between convergent coexpression and intolerance (LOEUF scores) stratified by association with ASD among significantly convergent genes.

Purple represents ASD non-associated genes (BF < 2), and yellow indicates ASD-associated genes (BF > 2). Significant convergence is defined as pbonf < 0.01.
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similar to those that were linked to ASD (Figure 4B). Consistent

results were identified among convergent SCZ genes (Fig-

ure S10). We show that positive convergence is more signifi-

cantly correlated with the ASD effect size driven by missense

than protein-truncating variation (Spearman’s rank correlation,

missense type A, missense variants with missense badness,

Polyphen-2, and constraint [MPC]31 scores between 1 and 2:

rho = 0.117, p = 5.363 10�5; missense typeB,missense variants

with MPC scores greater than or equal to 2: rho = 0.103, p =

3.96 3 10�4; protein truncating: rho = 0.04, p = 0.039).

Finally, we sought to assess whether convergence may in-

crease the power to detect genes that have some level of evi-

dence linking them to ASD risk but have not been implicated in

exome consortium analyses. To address this question, we lever-

aged the manually curated database of genes implicated in ASD

susceptibility by the Simons Foundation Autism Research Initia-

tive (SFARI; https://gene.sfari.org/). Genes in this database

come from large-scale sequencing studies but also from func-

tional studies, clinical reports, and genetic studies of common

variation. After excluding all genes associated with ASD using

the same criteria as before (BF > 2), there was a significant

enrichment of the remaining positively convergent genes among

this broader ASD gene set (Fisher’s exact test, OR: 3.00 [2.07–

4.37], p = 1.00 3 10�9) (Table S4). We additionally find similar

synaptic pathways enriched among the non-ASD convergent

genes (Table S5), which was replicated in the frontal cortex

(Table S6). This finding suggests that convergence may provide

a useful supplement to sequencing studies when searching for

additional ASD risk genes.

DISCUSSION

Understanding the context-specific functional consequences of

perturbing genes will be important in elucidating the molecular

underpinnings of disease. Because in vitro experiments remain
costly and challenging to scale, in silico approaches provide im-

mediate opportunities to improve understanding. Here, we show

that coexpression can proxy the regulatory consequences of

CRISPR perturbation across shared contexts with similar corre-

lation to replicate CRISPR experiments involving the same gene.

Postmortem brain coexpressionmeta-analyzed across 71 genes

implicated in ASD was then used to demonstrate highly signifi-

cant regulatory convergence among synaptic genes. Finally,

these convergent genes were found to be enriched for genes

with support linking them to ASD but without definitive statistical

evidence from large-scale rare genetics studies, which are un-

derpowered to evaluate genes with short coding sequence

length and high intolerance.

Our hypothesis was that gene-gene coexpression would cap-

ture some proportion of the downstream transcriptional conse-

quences of perturbing a gene through CRISPR in a shared

context, providinganopportunity to ‘‘proxy’’ theseeffects in silico

and assess functional effects shared acrossmany disease genes

(‘‘convergence’’). Regardless of whether a CRISPR target gene

was upregulated or downregulated, genes that were positively

coexpressed with the target gene experienced transcriptional

dysregulation in the same direction as the target. For CRISPRi

gene knockdown experiments, genes positively coexpressed

with the perturbed gene showed decreased expression, and for

CRISPRa, such genes showed increased expression. Impor-

tantly, we show that the correlation of coexpression and

CRISPR perturbation is similar to the correlation of different

CRISPR experiments modulating the same gene. Furthermore,

the meta-analysis incorporating multiple CRISPR experiments

is even more highly correlated with coexpression, highlighting

the variability in perturbation across CRISPR experiments and

potential benefits of repeated experiments with different variants

and backgrounds. Additionally, we found that the convergent dif-

ferential expression frommultipleCRISPRperturbationscouldbe

inferred by convergent coexpression of the same perturbed
Cell Genomics 3, 100277, April 12, 2023 7
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genes. These results suggest that coexpression could be used to

assess transcriptional convergence of disease-relevant genes.

We explored this possibility by assessing the transcriptional

convergence of 71 ASD risk genes and found that there was

highly significant convergence. The degree of convergence

was context specific and absent in coexpression data from liver,

left ventricle, or muscle but with a strong signature in both brain

tissues. We found that context-specific convergence existed in

other brain and non-brain diseases, such as SCZ and atrial fibril-

lation, demonstrating the generalizability of the approach. Signif-

icant convergence was also correlated with evidence of associ-

ation with ASD from sequencing studies and with differential

expression between ASD cases and controls in postmortem

brain tissue. For SCZ, we found previously implicated genes

such as FURIN to be strongly convergent, but there were fewer

significant genes, which may reflect lower power36. Moreover,

there are multiple pathways relevant to NDDs significantly en-

riched for the convergent genes, including pathways involving

the synapse and ion channels,32–34 reinforcing the link to ASD.

Intriguingly, the relationship between convergence and ASD is

predominantly a product of positive convergence, or genes posi-

tively coexpressed with many of the ASD risk genes. In general,

there are more strongly positively convergent genes than nega-

tive. However, despite there being many significant negative

convergent genes, these genes as a class lack existing evidence

of ASD association, and compared with the positive convergent

genes, they do not show enrichment within previously implicated

ASD pathways. These results could point to a bias of coexpres-

sion, reflect ascertainment limitations arising from genes

harboring of de novo LoF variants, or signal a biological phenom-

enon where only downstream functional effects in the same di-

rection as dysregulation of risk genes contribute to risk.

Large-scale genetics studies have contributed dramatically to

our current knowledge regarding the biological basis of ASD and

spearheaded the identification of the risk genes used here to

quantify convergence. These studies depend on observing a sta-

tistically significant excess of deleterious variation among cases.

Factors that reduce the likelihood of finding variants such as a

short coding sequence or mutational inviability diminish the po-

wer of these studies, potentially precluding genuine ASD risk

genes from discovery via this approach. We were interested in

whether our convergence metric could identify such putative

‘‘hidden’’ ASD risk genes. We show that our convergent genes

are substantially shorter but similarly intolerant compared with

genes previously associated with ASD and SCZ. Finally, we

show that convergent genes not associated with ASD from

sequencing studies are still enriched for genes implicated in

ASD from clinical diagnostic studies, functional studies, or ana-

lyses of common variation, nominating our convergent genes

described here as potential novel ASD risk genes. For example,

LMTK2 was the most convergently coexpressed gene with no

association to ASD. It is highly intolerant to LoF mutation

(LOEUF = 0.24) and highly expressed in brain tissue.27,29 Inter-

estingly, disruption of this gene contributes to infertility

phenotypes in male mice.35 The gene has also been linked to

Alzheimer’s disease and has been suggested to play an impor-

tant role in axonal transport.36,37 Despite being strongly

coexpressed with high-confidence ASD genes and having char-
8 Cell Genomics 3, 100277, April 12, 2023
acteristics similar to other ASD genes, it has not been implicated

in ASD. Given the infertility phenotypes, this gene may have

been missed as an ASD contributor simply because of having

too few LoF de novo variants and thus insufficient power for

association.

Limitations of the study
The ability to proxy CRISPR perturbation with coexpression en-

ables quick in silico analyses to better understand transcriptional

consequences of disruptive mutations and functional conver-

gence.However, there are several limitations to this strategy. First,

most transcriptional data are derived from bulk tissue. This can

obscure relevant coexpression patterns, given the cellular hetero-

geneity and different transcriptional backgrounds among different

cell types.38With increasingly larger single-cell datasets, there is a

path to overcome this issue in the near future. Second, our primary

ASD convergence analysis assumes a single underlying conver-

gent pathway,whilemultiple pathways likely contribute, especially

given the heterogeneity in presentation across individuals diag-

nosed with ASD. The analytical approach described here can be

extended to search for multiple convergent pathways, and as the

genotype-phenotype association becomes more granular, we

may observe differing degrees of convergence for genes contrib-

uting to distinct phenotypic components of ASD. Finally, the use

of postmortem samples cannot fully capture convergence during

early development. Transcriptional consequences that may affect

neurobiology prenatally cannot be easily captured using postnatal

tissue.Future investigationsassessinghowtranscriptional conver-

gence differs across a developmental time span will prove critical

to assess the relevance of using stage-specific biospecimens to

answer specific biological questions.

In conclusion, coexpression provides an imperfect but simple

proxy for context-specific transcriptional consequences of

CRISPR perturbation and enables assessing convergence

across many risk genes to provide insight into the biology of dis-

ease. Most notably, this approach may facilitate the identifica-

tion of novel risk genes not captured by even the best-powered

sequencing studies to date.
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Recombinant BDNF Protein Peprotech 450–02
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Y-27632 dihydrochloride (Rock Inhibitor) MedChemExpress HY-10583

Critical commercial assays

Human Stem Cell Nucleofector Kit 1 Lonza VPH-5012

TruSeq stranded mRNA Sample Prep Kit Illumina RS-122-2102

Deposited data
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ATRX, CACNA1C, CHD8, DLGAP2, AFF2/FMR2,

KCNQ2, SCN2A, TENM1)

Deneault et al.10 GSE107878

RNA-seq from CRISPR-mediated LoF gene

editing neuronal models (MBD5)

Seabra et al.25 GSE144279

RNA-seq from CRISPR neuronal models (TSNARE1,

SNAP91, CLCN3, and FURIN)

Schrode et al.26 syn20502314

RNA-seq from CRISPR interference (CRISPRi) in

neuronal models (SCN2A)

This paper syn26970716

RNA-seq from CRISPR neuronal models (SCN2A) This paper GSE222259

Experimental models: Cell lines

Human pluripotent stem cell line: Massachusetts General Hospital GM08330

iPSC derived glutamatergic neurons In house differentiation N/A

Oligonucleotides

SCN2A crRNA sequence: 5-tatcgtagggggaccaacc-30 This paper N/A

SCN2A crRNA sequence: 50-gcgtggatctagtgaactt-30 This paper N/A

KCTD13 crRNA sequence: 50- taaaaaggatggatgtaggc-30 This paper N/A

KCTD13 crRNA sequence: 50-tgcctgtgttaggaggtatc-30 This paper N/A

Recombinant DNA

pSpCas9(BB)-2A-Puro (PX459) Amp Addgene 48139

Lentivirus TetO-Ngn2-Puro Addgene 52047

Lentivirus FUW-M2rtTA Addgene 20342

Software and algorithms

ImageJ Schneider et al.7 https://imagej.nih.gov/ij/

Scripts used for QC, analyses and relevant

bioinformatic analyses in the study

This study https://doi.org/10.5281/

zenodo.7603485

Bowtie2 Langmead and Salzberg8 http://bowtie-bio.sourceforge.net/

bowtie2/index.shtml

Samtools Li et al.9 http://samtools.sourceforge.net/

FastQC http://www.bioinformatics.babraham.

ac.uk/projects/fastqc

Trimmomatic Bolger39 https://github.com/timflutre/trimmomatic

STAR Dobin40 https://github.com/alexdobin/STAR

Picard Tools https://broadinstitute.github.io/picard/

RNASeQC DeLuca41 https://github.com/getzlab/rnaseqc
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RSeQC Wang42 https://rseqc.sourceforge.net/

DEXseq Anders43 https://bioconductor.org/packages/

release/bioc/html/DEXSeq.html

Integrative Genomics Viewer (IGV) Robinson44 https://software.broadinstitute.org/

software/igv/

Other

mTeSR medium STEMCELL Technologies 85850

Essential 8 Medium Thermo Fisher Scientific A1517001
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Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the lead contact, DouglasM.

Ruderfer (douglas.ruderfer@vanderbilt.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
All relevant code and scripts are available on Zenodo listed in the key resources table. Any new generated data has been deposited in

the Gene Expression Omnibus (GEO) with the accession number listed in the key resources table.

METHOD DETAILS

CRISPR perturbation functional models
We collected data from 17 newly generated and previously published CRISPR experiments targeting 15 different ASD-associated

genes. The transcriptomic data from all these CRISPR experiments were generated from isogenic iPSC-derived glutamatergic neu-

rons inducedbyNeurogenin 2 (Ngn2) overexpression.Dataof previously publishedcellularmodels generatedbyCRISPRperturbation

were ascertained from theNCBI’sGeneExpressionOmnibus (GEO) andSynapse. For theCRISPR-mediated LoFgeneeditingmodels

described inDeneault et al., gene counts andcovariate informationwere ascertained fromGEO (Accession#GSE107878). These con-

sisted of 10 ASD-relevant genes (ANOS1, ASTN2, ATRX,CACNA1C,CHD8,DLGAP2, AFF2/FMR2, KCNQ2, SCN2A, TENM1). Gene

counts and covariate information for MBD5 CRISPR-mediated LoF gene editing model were ascertained from GEO (Accession #:

GSE144279). For the CRISPR activation (CRISPRa) targets (TSNARE1, SNAP91, CLCN3, and FURIN), gene counts and covariate

information were ascertained from Synapse (syn20502314).18 CRISPR interference (CRISPRi) for SCN2A was ascertained from

Synapse (syn26970716). From those datasets, only neuronal lines were included, and experiments were removed if there was any

evidence of ineffective perturbation such as discordant RNA and protein levels of the perturbed gene.

Additionally,weusedunpublished transcriptomicdata fromSCN2AandKCTD13CRISPR-mediatedLoFgeneeditingmodelswhich

leveraged a dual-gRNA strategy to promote gene deletions. SCN2A sgRNAs targeted intron 4 and intron 11 (NM_001040142) to

generate a 7.5kb partial gene deletion, and the crRNA sequences used were: 50-TATCGTAGGGGGACCAACC-3’ and 50-GCGT

GGATCTAGTGAACTT-3’. KCTD13 sgRNAs targeted 50 AND-30 regions from KCTD13 (NM_178863) to generate a 23.3kb full gene

deletion, and the crRNA sequences used were: 50-taaaaaggatggatgtaggc-30 and 50-tgcctgtgttaggaggtatc-30.
The deletion lines were generated in the male control human iPSC line GM08330-8 using the Human Stem Cell Nucleofector Kit 1

(Lonza), transfecting 1mg CRISPR/Cas9 PX459 plasmid and 1mg of each gRNA using the Amaxa Nucleofection II device (Lonza),

according to the manufacturer’s instructions. Cells were subsequently plated on Matrigel plates in mTeSR1 or Essential 8 medium

supplemented with ROCK inhibitor for 24 h. For clonal isolation of SCN2Amodels, puromycin selection was started 24 h after trans-

fection and resistant colonies were picked and expanded 48 h after selection. For clonal isolation of KCTD13 models, cells were

separated by fluorescence-activated cell sorting (FACS) 48h after transfection. Genotyping of the resultant colonies for SCN2A

and KCTD13 was performed by Sanger sequencing of the deletion-specific region and ddPCR assays for copy number. A total of

4–6 successfully edited clones with heterozygous deletions plus 2–6 unedited (i.e. WT-Cas9 exposed) clonal colonies were

expanded per target. Prior to neuronal differentiation, iPSC clones were split into multiple replicates, and each was manipulated

in parallel during subsequent experiments.

For differentiation of SCN2A and KCTD13 human iPSC models into glutamatergic neurons, Ngn2-neuronal induction was per-

formed as previously described.45 Briefly, iPSCswere seeded at a density of 106 cells/mL and transducedwith a lentivirus expressing

TetO-Ngn2-GFP-Puro or TetO-Ngn2-Puro along with rtTA. Twenty-four hours after transduction, doxycycline was added to initiate
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Ngn2 expression, and then 24h later the cells were selected with puromycin. Ngn2-glutamatergic iPSC-derived neurons were

cultured in neuronalmaintenancemedium supplementedwith BDNF andGDNFgrowth factors for an additional 22 days. Subsequent

experiments were performed with 24-day-old Ngn2-glutamatergic neurons, using 6–34 total replicates per genotype (i.e. WT, hetero-

zygous deletion) per target gene.

RNA sequencing of CRISPR perturbations
SCN2A RNAseq libraries were prepared from 200 ng of total RNA using a TruSeq strandedmRNA Sample Prep Kit (Illumina cat# RS-

122-2102). Libraries were multiplexed, pooled and sequenced on multiple lanes of the Illumina NovaSeq platform, generating an

average of 30.7M paired-end 150 bp-cycle reads for 30 samples (20 SCN2A+/�, 10 SCN2A+/+). RNAseq data was processed using

a standard workflow, which includes quality assessment of fastq reads using FastQc (http://www.bioinformatics.babraham.ac.uk/

projects/fastqc). Raw sequence reads were trimmed against Illumina adapters using Trimmomatic39 (v. 0.36) with parameters ILLU-

MINACLIP:adapter.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:75. Sequence reads were aligned to the

human reference genome (GRCh37, Ensembl build 75) using STAR40 (v. 2.5.2.a) with parameters ‘–outSAMunmapped Within –out-

FilterMultimapNmax 1 –outFilterMismatchNoverLmax 0.1 –alignIntronMin 21 – alignIntronMax 0 –alignEndsType Local –quantMode

GeneCounts –twopassMode Basic’. STAR aligner also generated gene level counts for all libraries relying on the human genome

annotation provided for Ensembl GRCh37, build 75. Quality checking of alignments was assessed by custom scripts utilizing

PicardTools (https://broadinstitute.github.io/picard/), RNASeQC,41 RSeQC42 and SamTools.46 The deletion introduced by

CRISPR on SCN2A loci was validated generating exon-level coverage using DEXseq43 and visually investigating target loci using

IGV.44 KCTD13 was included in gene edited as a potential contributor to 16p11.2 genomic disorder,47 and these lines are described

elsewhere.48 In brief, RNAseq libraries were prepared using a TruSeq stranded mRNA library kit (Illumina) and were multiplexed,

pooled and sequenced on multiple lanes of Illumina HiSeq 2500 platform, generating an average of 46.5M paired-end reads of

75bp for 11 samples (5 KCTD13+/�, 6 KCTD13+/+). The same RNAseq data processing pipeline without trimming step as above

was applied to KCTD13 RNAseq libraries. Processing of MBD5 RNAseq libraries were previously described elsewhere.25

For the CRISPR-mediated LoF gene editing models described in Deneault et al., gene counts and covariate information were as-

certained fromNCBI’s Gene Expression Omnibus (GEO accession: GSE107878). The processing of samples followed standard RNA

sequencing pipelines as previous described in Deneault et al. (2018).10

Differential expression analysis for CRISPR perturbations
Gene counts were input into DESeq2 for differential expression analysis. Geneswith normalized counts <10 in at least half of samples

were excluded. Covariates including RNA integrity number (RIN), batch, and processing date were included when available. AWald’s

test was used for differential expression and Z-scores were calculated by dividing the fold change by the SE. Each CRISPR pertur-

bation was analyzed separately.

Postmortem brain cohorts
Two separate cohorts of postmortem brain samples of the dorsolateral prefrontal cortex (DLPFC) were used. The CommonMind

Consortium (CMC) included tissue samples from Mount Sinai NIH Brain Bank and Tissue Repository, The University of Pittsburgh

NIH NeuroBioBank Brain and Tissue Repository, and the University of Pennsylvania Brain Bank of Psychiatric Illnesses and

Alzheimer’s Disease Core Center. The DLPFCwas dissected at each bank and sent to a centralized center, the Icahn School of Med-

icine at Mount Sinai (ISMMS) for RNA extraction. Tissues from bipolar disorder (BD) or schizophrenia cases were included if they met

the DSM-IV diagnostic criteria for schizoaffective disorder or schizophrenia, or for BD, which were determined in consensus confer-

ences after reviewing of medical records, direct clinical assessments, and care provider interviews. Samples were excluded if donors

had a history of Alzheimer’s disease, Parkinson disease, were on ventilators near time of death, or had acute neurological insults

(anoxia, strokes and/or traumatic brain injury) before death.

The Human Brain Core Collection (HBCC) cohort consisted of DLPFC samples from the NIMH HBCC. The samples were analyzed

clinically, neuropathologically, and toxicologically. The DSM-IV clinical diagnosis was determined through review of medical records

by two psychiatrists and family interviews. Non-psychiatric controls did not have a history of substance use disorder or psychiatric

conditions. Across all 933 samples, there were 345 females and 588 males. The self-reported ethnicities were 637 Europeans, 249

African, 33 Hispanic, 13 Asian and 1 other. Nearly fifty percent of samples were non-psychiatric controls (N = 462) and the remainder

had a psychiatric diagnosis (113 BD, 350 schizophrenia, and 8 affective disorder).49 The research abided by ethical regulations and

was approved by the Vanderbilt University Medical Center Review Board (IRB: 220287).

RNA sequencing of postmortem samples
Approximately 50 mg of homogenized tissue from the DLPFC was used to isolate RNA. The two cohorts were processed separately.

Samples with age <18 were excluded prior to analysis. The RNAseq processing is identical to that described in Han et al. (2020)50

except for not using surrogate variable analysis (SVA) here to avoid removing trans-regulatory effects. Briefly, STARwas used to align

RNA sequencing reads to GRCh37. FeatureCounts (v1.5.2) was used to count uniquely mapped reads that overlapped genes using

the Ensembl v75 annotations. Fixed/mixed effects modeling were used for library normalization and covariate adjustments. Genes

that were expressed at levels >1 counts per million (CPM) in at least half of the samples in each study were retained for analysis.
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Conditional quantile normalization was done to account for variation in GC-content and gene length. A weighted-linear model using

voom-limma was used to assess the sampling abundance confidence. Normalized log2(CPM) values were used for hierarchical clus-

tering and principal component analysis to detect outlier samples. Samples were removed if deemed outliers using either method.

For the CMC cohort, covariates were identified using a stepwise fixed/mixed effect regression model to identify covariates signifi-

cantly associated with gene expression. The covariates were added if there was an association with principal components explaining

greater than 1% of expression residual variance. For the HBCC cohort, model selection was determined through Bayesian informa-

tion criteria (BIC). BIC were used to find fixed effect covariates that improved the model for most genes. Covariate adjustment was

done using with a fixed/mixed effect linear regression variant, choosing mixed effect models when several samples were available

per donor: gene expression � covariates + sex + diagnosis + (1|Donor). Observation weights were calculated using voom-limma to

adjust for the mean-variance relationship. The covariate-adjusted expression was generated after adding back the diagnostic

component. This was done for both HBCC and CMC cohorts.

Generating pairwise coexpression of genes in the DLPFC
For each of the two cohorts, the covariate-adjusted expression was used to calculate coexpression values across all 16,992 genes. A

pairwise Pearson’s correlation was calculated for each pair of genes and the correlation coefficient was subsequently transformed

into a Z score using a Fisher transformation. The coexpression Z-scores for each pair of genes were subsequently meta-analyzed

across the two cohorts using Stouffer’s weighted Z score method.

Assessing relationship between CRISPR perturbation and coexpression
For each experiment, we calculated Pearson correlation between the rank normalized differential expression and the perturbed

gene’s coexpression profiles from the postmortem brain tissue. ASD CRISPR perturbations were meta-analyzed using Stouffer’s

weighted Z score and compared to the meta-analyzed coexpression of the same genes. The relationship was subsequently as-

sessed with a Pearson’s correlation.

ASD convergent coexpression meta-analysis
We included 71 genes implicated in risk of ASD from a cross-consortia exome sequencing study that combined de novo and inherited

single-nucleotide variant (SNV), indel, and CNV analyses (FDR <0.001, approximating exome-wide Bonferroni correction).5 After

filtering out genes due to low expression level, we performed a meta-analysis of the coexpression profiles of the 71 genes. Coex-

pression Z-scores were meta-analyzed using Stouffer’s weighted Z score method to generate meta-analyzed coexpression effect

sizes, which represent the convergent coexpression effect. To assess whether convergence of ASD risk genes is tissue specific,

we used Genotype Tissue Expression Consortium (GTEx) RNAseq counts of the frontal cortex (BA9) (N = 209), left ventricle (N =

432), skeletal muscle (N = 803) and liver (N = 226) as negative controls. We selected these as they are not derived from the ectoderm

or previously implicated in ASD. Convergence was calculated using the same methods as described previously. To assess the null

distribution for ASD convergence, we conducted 10,000,000 permutations where for each permutation a meta-analysis was per-

formed using 71 randomly-selected genes, excluding the 71 ASD genes. At the time these analyses were done, there were only

71 high-confidence ASD genes based on the preprint but there are now 72 implicated ASD genes. Additionally, we conducted

convergence leveraging all nominally significant 185 ASD genes (FDR <0.05) and ASD-specific or development disorder-specific

genes.51 The empirical p values were calculated, as shown here: (# of absolute convergent Z-scores greater than or equal to the ab-

solute convergent ASD Z score +1)/(Total # of permutations +1). A Bonferroni-correction was then applied to the empirical p values

and a threshold of p < 0.01 after correction was used to increase stringency.

To account for the potential effects of confounding from LoF observed/expected upper bound fraction (LOEUF), the permutation

was repeated by matching on LOEUF scores within �/+ 0.05 of each gene. Genes that were Bonferroni-significant and large effect

(absolute Z score >2) were input into ToppGene for pathway enrichment, with the background gene set being all unique genes with

coexpression values. Afterward, we sought to determine whether the convergent coexpression relates to differentially expressed

ASD genes. Summary statistics from the ASD vs control postmortem brain PsychENCODE dataset were ascertained and correlated

against the convergent coexpression.

Dissecting relationship between convergence, intolerance and ASD association
Since ASD risk genes are strongly LoF intolerant, and intolerant genes are more coexpressed with each other, we wanted to assess

whether among the significant convergent geneswere also tolerant genes associated with ASD. To define intolerance, we divided the

genes into two sets, tolerant (LOEUF >0.35) and intolerant (LOEUF <0.35). The correlation was assessed between transcriptional

convergence and the -log10(p) significance of the exome data. Next, we sought to identify whether transcriptional convergence

can identify novel ASD genes that have not been previously implicated due to limitations of genetic studies. We defined ASD asso-

ciation as having a total Bayes factor (BF) > 2 for the exome data which is includes the presence of even a weak association. A BF of

greater than 3 is typically used to representmeaningful significance.We assessed the correlation between LOEUF and transcriptional

convergence for both associated and non-associated ASD genes.
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Classification of 71 ASD associated genes
We categorized 71 ASD associated genes into three main functional groups including chromatin, transcription and synaptic by their

association with chromatin function related GO terms ("GOMF_CHROMATIN_BINDING", "GOMF_CHROMATIN_DNA_BINDING",

"GOBP_REGULATION_OF_CHROMATIN_ASSEMBLY_OR_DISASSEMBLY","GOBP_CHROMATIN_ORGANIZATION","GOBP_CH

ROMATIN_REMODELING","GOBP_REGULATION_OF_CHROMATIN_BINDING","GOBP_CHROMATIN_MEDIATED_MAINTENAN

CE_OF_TRANSCRIPTION","GOBP_CHROMATIN_MAINTENANCE","GOBP_REGULATION_OF_CHROMATIN_ORGANIZATION")

and transcription related GO terms ("GOBP_mRNA_TRANSCRIPTION", "GOBP_REGULATION_OF_TRANSCRIPTION_REGULA

TORY_REGION_DNA_BINDING", "GOBP_mRNA_TRANSCRIPTION_BY_RNA_POLYMERASE_II","GOBP_CHROMATIN_ORGANI

ZATION_INVOLVED_IN_REGULATION_OF_TRANSCRIPTION","GOMF_RNA_POLYMERASE_II_TRANSCRIPTION_FACTOR_BIN

DING","GOMF_TRANSCRIPTION_COREGULATOR_BINDING","GOMF_DNA_BINDING_TRANSCRIPTION_FACTOR_ACTIVITY","

GOMF_TRANSCRIPTION_FACTOR_BINDING","GOMF_TRANSCRIPTION_REGULATOR_ACTIVITY") and synaptic function based

on manual curation reported in SynGO v1.1 database.52 The above listed GO terms and their associated genes were retrieved

from MSigDB (v7.4) database. Genes that were not identified in any of these categories were manually further classified based on

https://www.genecards.org/.
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